
³He A, B phase Superfluid density in Aerogel

Jeevak Parpia, Cornell University NSF DMR 0202113

³He is the purest system known. Silica aerogel, an ultra-light glass provides the means to add "correlated disorder" to the ³He.

The superfluid state of disordered ³He shows characteristics different from that of "clean" bulk ³He. The onset and properties of the two zero field states (the A and B phases) is significantly different. We assay these phases by seeing how much fluid is in the superfluid state. The results imply that the disordered A phase is very different from the bulk A phase.

Nazaretski, Mulders, Parpia JETP Lett. 79, 470 (2004)

Top panel shows the superfluid fraction while cooling (A phase, blue arrow) and warming (B phase red arrow). The ratio at 3 pressures is shown in the lower panel.

Disordered ³He A & B Phase superfluid density

Jeevak Parpia, Cornell University DMR 0202113, DMR 0071630

Education

A post doc, Evgueni Nazaretski, led this work and is now a staff member at Los Alamos.

Andrew Fefferman, a first year Grad Student at Cornell is continuing this research.

Norbert Mulders is a Professor at the University of Delaware

Societal Impact

The ability to understand the role of disorder on phase transitions is of importance in topics as diverse as metallurgy and biology.

Bulk ³He is a system that has been proposed as an experimental laboratory for models of the formation of stellar matter. Adding disorder to the system may allow us to understand the analogy better.